Heat content asymptotics with singular initial temperature distributions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Content Asymptotics with Singular Initial Temperature Distributions

We study the heat content asymptotics with either Dirichlet or Robin boundary conditions where the initial temperature exhibits radial blowup near the boundary. We show that there is a complete small-time asymptotic expansion and give explicit geometrical formulas for the first few terms in the expansion.

متن کامل

Heat content asymptotics for Riemannian manifolds with Zaremba boundary conditions

The existence of a full asymptotic expansion for the heat content asymptotics of an operator of Laplace type with classical Zaremba boundary conditions on a smooth manifold is established. The first three coefficients in this asymptotic expansion are determined in terms of geometric invariants; partial information is obtained about the fourth coefficient.

متن کامل

Heat Content Asymptotics with Transmittal and Transmission Boundary Conditions

We study the heat content asymptotics on a Riemannian manifold with smoooth boundary defined by Dirichlet, Neumann, transmittal and transmission boundary conditions. Subject Classification: 58J50

متن کامل

The Heat Content Asymptotics of a Time Dependent Process

Let M be a compact manifold with smooth boundary. We study the heat content asymptotics on M defined by a time dependent heat source and time dependent boundary conditions. We adopt the following notational conventions: let M be a compact Riemannian manifold with smooth boundary ∂M , let ∆ = δd be the scalar Laplacian on M , let x be a point of the interior of M , let y be a point of the bounda...

متن کامل

Asymptotics at irregular singular points

• Introduction 1. Example: rotationally symmetric eigenfunctions on R 2. Example: translation-equivariant eigenfunctions on H 3. Beginning of construction of solutions 4. K(x, t) is bounded 5. End of construction of solutions 6. Asymptotics of solutions 7. Appendix: asymptotic expansions • Bibliography According to [Erdélyi 1956], Thomé [1] found that differential equations with finite rank irr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2008

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2008.03.002